SAULT COLLEGE | 443 NORTHERN AVENUE | SAULT STE. MARIE, ON P6B 4J3, CANADA | 705-759-2554

Prepared: Juhani Paloniemi Approved: Corey Meunier

Course Code: Title	RAA106: ROBOT MECHANICS	
Program Number: Name	4068: ROBOTICS AUTOMATION	
Department:	ROBOTICS GRADUATE CERTIFICATE	
Semester/Term:	17F	
Course Description:	The objective of this course is to introduce students to robot kinematics. The emphasis will be on the mathematical techniques used to relate the position and orientation of the end effector to the positions of the links and joints of the robot arm. The students will familiarize themselves with several common robot arm configurations and how their positions and motions are described. The students will be introduced to vector and matrix mathematics which form the basis of the techniques used.	
Total Credits:	2	
Hours/Week:	3	
Total Hours:	45	
This course is a pre-requisite for:	RAA200, RAA201, RAA203, RAA204	
Vocational Learning Outcomes (VLO's):	#1. Construct and evaluate robotic control programs for various scenarios against which to model the functionality and stability of automation systems.#5. Validate and optimize the functioning of motor, drive, control, and robotic systems.	
Please refer to program web page for a complete listing of program outcomes where applicable.		
Essential Employability Skills (EES):	#3. Execute mathematical operations accurately.#4. Apply a systematic approach to solve problems.	
Course Evaluation:	Passing Grade: 50%, D	
Evaluation Process and Grading System:	Evaluation Type	Evaluation Weight
	Quizzes and/or Assignments	20%
	Tests (4 evenly weighted)	80%

SAULT COLLEGE | 443 NORTHERN AVENUE | SAULT STE. MARIE, ON P6B 4J3, CANADA | 705-759-2554

Prepared: Juhani Paloniemi Approved: Corey Meunier

Course Outcomes and Learning Objectives:

Course Outcome 1.

Explain the basic principles of robot kinematics

Learning Objectives 1.

- o Describe forward kinematics
- o Describe reverse kinematics

Course Outcome 2.

Define positions and orientations in 2-D and 3-D space

Learning Objectives 2.

- o Use vectors to describe a point in 2-D space using Cartesian and polar coordinates
- o Convert between Cartesian and polar coordinates in 2-D space

o Use vectors to describe a point in 3-D space using Cartesian, cylindrical and spherical coordinates

- o Calculate the change in position of a point resulting from rotation of a vector
- o Add vectors in 2-D and 3-D space
- o Represent position vectors in matrix form
- o Represent orientation of a vector in matrix form
- o Explain what a frame is
- o Map a point in one frame into another frame
- o Map between translated and rotated frames
- o Derive and solve transform equations

Course Outcome 3.

Mathematically describe the position and orientation of a given robot's end effector

Learning Objectives 3.

o Define link and joint

SAULT COLLEGE | 443 NORTHERN AVENUE | SAULT STE. MARIE, ON P6B 4J3, CANADA | 705-759-2554

Prepared: Juhani Paloniemi Approved: Corey Meunier

o Describe base, station, wrist and tool frames o Describe link frames in relation to each other and to the base frame Course Outcome 4. Describe inverse kinematics Learning Objectives 4. o Explain common challenges in inverse kinematics o Describe limitations to the existence of solutions o Explain multiple solutions Course Outcome 5. Describe force and velocity considerations of robot arms Learning Objectives 5. o Calculate the velocity of a point in relation to angular velocity of a link o Describe torque in terms of force and link length Date: Friday, September 1, 2017 Please refer to the course outline addendum on the Learning Management System for further information.